

US007159441B2

(12) United States Patent

Challoner et al.

(10) Patent No.: US 7,159,441 B2

(45) **Date of Patent: Jan. 9, 2007**

(54) CLOVERLEAF MICROGYROSCOPE WITH ELECTROSTATIC ALIGNMENT AND TUNING

(75) Inventors: **A. Dorian Challoner**, Manhattan Beach, CA (US); **Roman C. Gutierrez**,

La Crescenta, CA (US); Tony K. Tang,

Glendale, CA (US)

(73) Assignee: **The Boeing Company**, Chicago, IL

(US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 234 days.

(21) Appl. No.: 10/843,139

(22) Filed: May 11, 2004

(65) Prior Publication Data

US 2004/0237626 A1 Dec. 2, 2004

Related U.S. Application Data

- (63) Continuation-in-part of application No. 09/927,858, filed on Aug. 9, 2001, now abandoned.
- (51) Int. Cl. G01C 19/00 (2006.01)
- (52) U.S. Cl. 73/1.77; 73/504.02; 73/504.04

(56) References Cited

U.S. PATENT DOCUMENTS

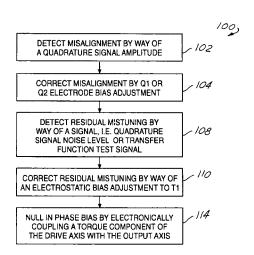
4,587,860 A * 5/1986 Audren 74/5 F

FOREIGN PATENT DOCUMENTS

WO 9745702 4/1997

OTHER PUBLICATIONS

Geiger, W, et al., New Designs of Macromachined Vibrating Rate Gyroscopes with Decoupled Oscillation Modes, 1997 International Conference on Solid-State Sensors and Actuators, Jun. 16, 1997, pp. 1129-1132, vol. 2, Chicago, Illinois.


(Continued)

Primary Examiner—Hezron Williams Assistant Examiner—Nashmiya Fayyaz (74) Attorney, Agent, or Firm—Ostrager Chong Flaherty & Broitman P.C.

(57) ABSTRACT

A micro-gyroscope (10) having closed loop output operation by a control voltage (V_{tv}) , that is demodulated by a drive axis (x-axis) signal V_{thx} of the sense electrodes (S1, S2), providing Coriolis torque rebalance to prevent displacement of the micro-gyroscope (10) on the output axis (y-axis) V_{thy} -0. Closed loop drive axis torque, V_{tx} maintains a constant drive axis amplitude signal, $V_{\textit{thx}}$. The present invention provides independent alignment and tuning of the micro-gyroscope by using separate electrodes and electrostatic bias voltages to adjust alignment and tuning. A quadrature amplitude signal, or cross-axis transfer function peak amplitude is used to detect misalignment that is corrected to zero by an electrostatic bias voltage adjustment. The crossaxis transfer function is either V_{thy}/V_{ty} or V_{tnx}/V_{tx} . A quadrature signal noise level, or difference in natural frequencies estimated from measurements of the transfer functions is used to detect residual mistuning, that is corrected to zero by a second electrostatic bias voltage adjustment.

(Continued) 16 Claims, 3 Drawing Sheets

